Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 1968-1985, 2021.
Article in Chinese | WPRIM | ID: wpr-887775

ABSTRACT

Phytocannabinoids are bioactive terpenoids that are exclusive to Cannabis sativa L. The main pharmacologically active phytocannabinoids are Δ9-tetrahydrocannabinol and cannabidiol, both target endogenous cannabinoid receptors. Δ9-tetrahydrocannabinol and cannabidiol have extensive therapeutic potential due to their participation in many physiological and pathological processes in human body by activating the endocannabinoid system. At present, Δ9-tetrahydrocannabinol, cannabidiol and their analogues or combination preparations are used to treat epilepsy, vomiting in patients with cancer chemotherapy, spasticity in multiple sclerosis and relieve neuropathic pain and pain in patients with advanced cancer. With the further exploration of the application value of Δ9-tetrahydrocannabinol and cannabidiol as well as the increasing demand for standardization of pharmaceutical preparations, it is imminent to achieve large-scale production of Δ9-tetrahydrocannabinol and cannabidiol in the pharmaceutical industry. In this article, pharmacological research progress of phytocannabinoids in recent years, biosynthetic pathways of phytocannabinoids and the mechanism of key enzymes as well as various product development strategies of cannabinoids in pharmaceutical industry are reviewed. By exploring the potential of synthetic biology as an alternative strategy for the source of phytocannabinoids, it will provide a theoretical basis for the research and development of microbial engineering for cannabinoids synthesis, and promote the large-scale production of medicinal cannabinoids.


Subject(s)
Humans , Cannabidiol , Cannabinoids/biosynthesis , Cannabis , Receptors, Cannabinoid
2.
Acta Pharmaceutica Sinica B ; (6): 1078-1083, 2019.
Article in English | WPRIM | ID: wpr-774921

ABSTRACT

The renewed interest in dimeric salicylates as broad-spectrum anti-inflammatory and anti-diabetic agents provided a rationale to investigate the dimerization of the substituted salicylate -tetrahydrocannabinolic acid (THCA-A, ) as a strategy to solve its instability to decarboxylation and to generate analogues and/or pro-drugs of this native pre-cannabinoid. Activation of the carboxylic group with the DCC-HOBt-DMAP protocol afforded a high yield of the OBt ester , that was next converted into the highly crystalline di-depsidic dimer upon treatment with DMAP. The mono-depsidic dimer was also formed when the reaction was carried out with partially decarboxylated THCA-A samples. The structure of the depsidic dimers was established by spectroscopic methods and by aminolysis of into the pre-cannabinoid amide . Both dimers showed excellent shelf stability and did not generate significant amounts of -THC upon heating. However, only the didepsidic dimer activated PPAR-, the major target of pre-cannabinoids, but strong binding to serum proteins abolished this activity, also shielding it from the action of esterases.

SELECTION OF CITATIONS
SEARCH DETAIL